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“Far and away the best prize that life
offers is the chance to work hard at
work worth doing.”

Teddy Roosevelt



Image
Generation



Generating Images

We’ll discuss two different ways of generating images
Variational autoencoders (VAESs)
Generative adversarial networks (GANs)

These methods can also be used to generate sound, music or text, but
we’ll focus on images



Generating Images

Main idea: sample from a latent space of images to create entirely new
images
Latent space: a low-dimensional representation (vector space) where any
point can be mapped to a realistic-looking image
The module that takes in a point from the latent space and generates an
image is called a generator (in the case of GANs) or a decoder (in the case of

VAES)
Generates images never explicitly seen before
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Concept vectors

We want to create (learn) a latent vector space
We can think of this as embedding - just like what we will do with text and

RNNs
Certain directions in the space may encode interesting axes of variation in

the original data
Example: vectors that represent a smile or vectors that represent sunglasses

Once we create these vectors we can edit images by projecting them into the
latent space, moving their representation in a meaningful way, and then decoding

them back to image space
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Autoencoders

Autoencoders are neural networks used to learn efficient
representations (encodings) in an unsupervised way

A type of dimensionality reduction

At the same time they learn to decode the representations into

something very close to the input

Reconstructs the original image as much as possible

Essentially “memorizing” images
Not creating (generating) anything new

Encoder
Network

(conv)

Decoder
Network

(deconv)

latent vector / variables
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Autoencoders

Used for
Denoising, face recognition, anomaly detection, dimensionality reduction, etc.

x=d(e(x)) wp losslessencoding
no information is lost

encoder decoder when reducing the

e d number of dimensions

x#d(e(x)) = lossyencoding
some information is lost
when reducing the
number of dimensions and
d (E()()) can't be recovered later

X

initial data encoded-decoded data
in space R back in the initial space R"

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73



https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Autoencoders

neural network neural network

encoder decoder

X x=d(z)

loss = |[x-X|?= [|x-d@)]|P? = ||x-de()]|]
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Autoencoders

initial dim 3
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Data in the full initial space

In order to reduce dimensionality, PCA and linear autoencoder
target, in theory, the same optimal subspace to project data on...

(‘M"”PCA 0; F
car-end up it any begis )

aedim 2

aedim 1

pcadim 1

pca dim 2

Data projected on the best linear subspace

... but not necessarily with the same basis due to different constraints

(in PCA the first component is the one that explains the maximum
of variance and components are orthogonal)
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Autoencoders

training
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encoder
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encoded vector
(in latent space)
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We can use the decoder
portion of the VAE to
generate new content
(e.g. new images!) by
sampling from the
latent space
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Autoencoders can build irregular-latent
space
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“regular” (that close points will map to close outputs) i
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Variational Autoencoders (VAES)

Simultaneously discovered by Kingma and Welling in December 2013
and Rezende, Mohamed, and Wierstra in January 2014

A generative model especially appropriate for the task of image editing
using concept vectors

Modern version of autoencoders

Autoencoders are networks that encode an input to a low-dimensional
latent space and then decode it back

The decoder learns how to reconstruct the original inputs with some added
noise to create new images

Learn to compress the input data into fewer bits of information
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https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/abs/1401.4082

Variational autoencoders are not
deterministic

latent input
. input representation reconstruction
simple
autoencoders x z=e(x) d(z)
latent sampled latent input
A input distribution representation reconstruction
variational
autoencoders X plz|x) z~ plz|x) d(z)
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neural network

encoder

neural network

decoder

x=d(z)

loss = || x-X|]> + KL

N, )] = [[x-d(@) | + KL

»N(0, 1) ]
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Intuition of a regular latent space

what can happen without regularisation x

V what we want to obtain with regularisation
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Variational Autoencoders (VAES)
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VAES

Autoencoders aren’t great at creating nicely structured latent spaces and they
also don’t generate anything new

VAEs augment autoencoders to learn highly structured latent spaces and are able
to generate new images

Are regularized versions of autoencoders
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VAES

Rather than compressing the image into a fixed code in the latent space, VAEs
turn the image into the parameters of a statistical distribution (a mean and
variance)
Assume the input image has been generated by a statistical process and
that the randomness of this process should be taken into account when
encoding and decoding
A VAE uses the mean and variance parameters to randomly sample one
element from the distribution and decodes that element back to the original
input
This process improves robustness and forces the latent space to
encode meaningful representations everywhere: every pointin the
latent space is decoded to a valid output
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Autoencoders vs VAEsS

latent input
. input representation reconstruction
simple
autoencoders X z=e(x) d(z)
latent sampled latent input
.- input distribution representation reconstruction
variational
autoencoders X p(z|x) z~ p(z|x) d(z)
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VAES

training
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We can generate new data by decoding points that are randomly sampled from the latent space. The quality

and relevance of generated data depend on the regularity of the latent space.
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VAES

neural network neural network

encoder decoder

e N(p o ; X=d(z)

loss = ||x-X]|]? + KL N0, )] = || x-d(2) |2 + KL[N(p o), N(O, 1) ]

In variational autoencoders, the loss function is composed of a reconstruction term (that makes the encoding-
decoding scheme efficient) and a regularisation term (that makes the latent space regular).

Distribution over latent
space defined by z_mean
Input image and z_log_var

—
Reconstructed

l
<

Point randomly
sampled from
the distribution

image
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VAES

Algorithm steps:
An encoder module turns the input samples into two parameters in a latent space of
representations, z_mean and z_log_variance
Randomly sample a point z from the latent normal distribution that’s assumed to
generate the inputimage, via

z = z_mean + exp(z_log_variance) *epsilon
where epsilon is a random tensor of small values

A decoder module maps this point in the latent space back to the original inputimage

Having epsilon be random ensures every point that’s close to the latent location where you
encoded the input image can be decoded to something similar to the inputimage - but not
exactly the same
Also forces every direction in the latent space to encode a meaningful axis of variation
of the data, making the latent space very structured and highly suitable to
manipulation via concept vectors
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VAE Training

Parameters are trained using two loss functions
Reconstruction (generative) loss: measures how accurately the network
reconstructed the images; forces the decoded samples to match the initial
inputs
Regularization (latent) loss: measures how closely the latent variables
match a unit Gaussian distribution; helps learn well-formed latent spaces
and reduce overfitting to the training data

Because this is a different type of loss, Keras allows you to have a custom
loss function and add it as a layer to your network using the add_loss
layer
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VAE on MNIST Data
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VAES for Medicine

Extracting a biologically relevant latent space from cancer
transcriptomes with variational autoencoders

Gregory P. Way and
Genomics and Computational Biology Graduate Program, University of Pennsylvania,
Philadelphia, PA 19104, USA

Casey S. Greene’
Department of Systems Pharmacology and Translational Therapeutics, University of
Pennsylvania, Philadelphia, PA 19104, USA

Abstract

The Cancer Genome Atlas (TCGA) has profiled over 10,000 tumors across 33 different cancer-
types for many genomic features, including gene expression levels. Gene expression
measurements capture substantial information about the state of each tumor. Certain classes of
deep neural network models are capable of learning a meaningful latent space. Such a latent space
could be used to explore and generate hypothetical gene expression profiles under various types of
molecular and genetic perturbation. For example, one might wish to use such a model to predict a
tumor’s response to specific therapies or to characterize complex gene expression activations
existing in differential proportions in different tumors. Variational autoencoders (VAEs) are a deep
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Fig. 2. Samples encoded by a variational autoencoder retain biological signals
(A) t-distributed stochastic neighbor embedding (t-SNE) of TCGA pan-cancer tumors with

Tybalt encoded features. (B) t-SNE of 0-1 normalized gene expression features. Tybalt
retains similar signals as compared to uncompressed gene expression data. (C) Full Tybalt
encoding features by TCGA pan-cancer sample heatmap. Given on the y axis are the
patients sex and type of sample.
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) setup.py
tsne_tybalt_features.ipynb
[£) tybalt_twohidden.ipynb

[ tybalt_vae.ipynb

README.md

Tybalt éj

add util import to init (#133) a year ago
Adding ADAGE model to tsne visualization (#114) a year ago
Add Two Hidden Layer Model (#81) 2 years ago
Update conda environments (#108) a year ago

A Variational Autoencoder trained on Pan-Cancer Gene Expression

Gregory Way and Casey Greene 2017

DOI 10.5281/zenodo.1047069

The repository stores scripts to train, evaluate, and extract knowledge from a variational autoencoder (VAE) trained on 33
different cancer-types from The Cancer Genome Atlas (TCGA).

The specific VAE model is named Tybalt after an instigative, cat-like character in Shakespeare's "Romeo and Juliet". Just as
the character Tybalt sets off the series of events in the play, the model Tybalt begins the foray of VAE manifold learning in

transcriptomics. Also, deep unsupervised learning likes cats.

We discuss the training and evaluation of Tybalt in our PSB paper:

Extracting a Biologically Relevant Latent Space from Cancer Transcriptomes with Variational Autoencoders.
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VAES for Medicine

Dr.VAE: Drug Response Variational
Autoencoder

Ladislav Rampasek*'t Daniel Hidruf! Petr Smirnov$
Benjamin Haibe-Kains$ ¥l Anna Goldenberg*t

Abstract

‘We present two deep generative models based on Variational Autoencoders to
improve the accuracy of drug response prediction. Our models, Perturbation Variational
Autoencoder and its semi-supervised extension, Drug Response Variational Autoencoder
(Dr.VAE), learn latent representation of the underlying gene states before and after
drug application that depend on: (i) drug-induced biological change of each gene and
(ii) overall treatment response outcome. Qur VAE-based models outperform the current
published benchmarks in the field by anywhere from 3 to 11% AUROC and 2 to 30%
AUPR. In addition, we found that better reconstruction accuracy does not necessarily
lead to improvement in classification accuracy and that jointly trained models perform
better than models that minimize reconstruction error independently.
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Generative
Adversarial Networks
(GANS)



GANSs

Introduced by Goodfellow et alin 2014
An alternative to VAEs for learning latent spaces of images

Enable generation of fairly realistic (have been increasingly realistic over time) synthetic images
by forcing the generated images to be statistically almost indistinguishable from real ones

Made of 2 parts:

Generator network: takes as input a random vector (a random point in the latent space)
and decodes it into a synthetic image - trained to fool the discriminator network
Discriminator network (or adversary): takes as input an image (real or synthetic) and

predicts whether the image came from the training set or was created by the generator
network
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Intuition Examples

Think of someone trying to create counterfeit money who has a spy inside a bank. They can create
the fake money and try to slip it past back employees. The bank employees will notice the fake
money easily in the beginning, but as the spy relays information to the counterfeiter, they will make
better fake versions of money that will be more difficult for bank employees to distinguish as fake.
Meanwhile, the bank will come up with new ways of detecting the updated counterfeit money.

ICANT | [ WHY NOT? SIGH,
MAE Ciatee ) ( 1TS ONLY A FINE. HERE'S
FOR THIS. HUNDRED. ;

IT'S ALSO FROM
A MONOPOLY SET.

©2017 Norman Feuti, Dist, by King Features Syndicate

www.retailcomic.com
|
1)

38



Intuition Examples

Think of someone trying to create counterfeit money who has a spy inside a bank. They can create
the fake money and try to slip it past back employees. The bank employees will notice the fake
money easily in the beginning, but as the spy relays information to the counterfeiter, they will make
better fake versions of money that will be more difficult for bank employees to distinguish as fake.
Meanwhile, the bank will come up with new ways of detecting the updated counterfeit money.

Discriminator

ICANT | [ WHY NOT?
MAE Ciatee ) ( 1TS ONLY A
FOR THIS. HUNDRED.

©2017 Norman Feuti, Dist, by King Features Syndicate

www.retailcomic.com
|
1)
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Intuition Examples

Now think of someone trying to forge Picasso paintings. They will be badin
the beginning, but will improve over time with feedback from an expert art
dealer on how they detected the fake art from the real paintings. At the same
time, new, more advanced techniques will be discovered to spot forged

paintings.
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GANSs

The generator learns to generate increasingly realistic images as it trains

At the same time, the discriminator network is constantly adapting to the gradually

improving capabilities of the generator

After training, the generatoris able to turn any pointin its input space into a believable image
Unlike VAEs, this latent space has fewer explicit guarantees of meaningful structure

Random vector
from the
latent space

\

{ Generator (decoder) ]—

Generated
(decoded)
image

“Real,” “Fake”

E .Q{ - J—

Mix of real
and fake images

Training
feedback
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Training

The optimization minimum isn’t fixed for GANs
Every step taken during gradient descent changes the entire landscape - the
optimization process is dynamic
Need to find an equilibrium, not a minimum
There are 2 opposing forces here - the generator and the discriminator

Very difficult to train
Many parameters to tune
Complex model architecture

42



Training

Implementation of a deep convolutional GAN (DCGAN) in Keras
The generator and discriminator are deep CNNs
A generator network maps vectors to images
A discriminator network maps images to a binary score estimating the
probability that the image is real
A gan network chains the generator and the discriminator together:

gan(x) = discriminator(generator(x))

Thus this gan network maps latent space vectors to the discriminator’s
assessment of the realism of these latent vectors as decoded by the
generator

43



Training

You train the discriminator using examples of real and fake images along

with “real”/“fake” labels, just as you train any regular image-classification
model

To train the generator, you use the gradients of the generator’s weights with
regard to the loss of the GAN model. This means, at every step, you move the
weights of the generator in a direction that makes the discriminator more
likely to classify as “real” the images decoded by the generator. In other
words, you train the generator to fool the discriminator
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Can you guess which image is from the training set (not created by the generator)
in each column?

49



Can you guess which image is from the training set (not created by the generator)
in each column?
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Can you guess which image is from the training set (not created by the generator)
in each column?
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Can you guess which image is from the training set (not created by the generator)
in each column?
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Can you guess which image is from the training set (not created by the generator)
in each column?
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GANSs for Medicine

https://arxiv.org/pdf/1809.06222.pdf

GANSs for Medical Image Analysis

Salome Kazeminia®®, Christoph Baur®!, Arjan Kuijper®, Bram van
Ginneken?, Nassir Navab?, Shadi Albarqouni®, Anirban Mukhopadhyay®

“ Department of Computer Science, TU Darmstadt, Germany
" Computer Aided Medical Procedures (CAMP), TU Munich, Germany
¢ Fraunhofer IGD, Darmstadt, Germany
4 Radboud University Medical Center, Nijmegen, The Netherlands

Abstract

Generative Adversarial Networks (GANs) and their extensions have carved open
many exciting ways to tackle well known and challenging medical image anal-
ysis problems such as medical image de-noising, reconstruction, segmentation,
data simulation, detection or classification. Furthermore, their ability to synthe-
size images at unprecedented levels of realism also gives hope that the chronic
scarcity of labeled data in the medical field can be resolved with the help of these
generative models. In this review paper, a broad overview of recent literature
on GANs for medical applications is given, the shortcomings and opportunities
of the proposed methods are thoroughly discussed and potential future work
is elaborated. We review the most relevant papers published until the submis-
sion date. For quick access, important details such as the underlying method,
datasets and performance are tabulated. An interactive visualization categorizes
all papers to keep the review alive?®.
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Figure 1: The pie chart of distribution of papers and visual examples of GAN functionality
among the different applications. Examples are taken from papers as the following: Condi-
tional synthesis Wolterink et al. (2017a), Denoising Wolterink et al. (2017b), Reconstruction
Zhang et al. (2018), Registration Yan et al. (2018), Classification Ren et al. (2018), Detection
Baumgartner et al. (2018), Unconditional synthesis Baur et al. (2018b), and Segmentation
Son et al. (2017).
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*GAN

A ton of different GAN architectures
have been created
cGAN
SeGAN
DCGAN
ACGAN
CycleGAN
MGAN
LSGAN
VAE-GAN
WGAnN

Figure 3: cGAN
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Figure 6: AC-GAN
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GANSs for Medicine

Unsupervised Anomaly Detection with

Generative Adversarial Networks to Guide

Marker Discovery

Thomas Schlegl'2 *, Philipp Seebiick!2, Sebastian M. Waldstein?,
Ursula Schmidt-Erfurth? | and Georg Langs®

!Computational Imaging Research Lab, Department of Biomedical Imaging and

Image-guided Therapy, Medical University Vienna, Austria
thomas.schlegl@meduniwien.ac.at

2Christian Doppler Laboratory for Ophthalmic ITmage Analysis, Department of

Ophthalmology and Optometry, Medical University Vienna, Austria

Abstract. Obtaining models that capture imaging markers relevant for
disease progression and treatment monitoring is challenging. Models are
typically based on large amounts of data with annotated examples of
known markers aiming at automating detection. High annotation ef-
fort and the limitation to a vocabulary of known markers limit the
power of such approaches. Here, we perform unsupervised learning to
identify anomalies in imaging data as candidates for markers. We pro-
pose AnoGAN, a deep convolutional generative adversarial network to
learn a manifold of normal anatomical variability, accompanying a novel
anomaly scoring scheme based on the mapping from image space to a la-
tent space. Applied to new data, the model labels anomalies, and scores
image patches indicating their fit into the learned distribution. Results
on optical coherence tomography images of the retina demonstrate that
the approach correctly identifies anomalous images, such as images con-
taining retinal fluid or hyperreflective foci.

https://arxiv.org/pdf/1703.05921.pdf

Training the GAN

@) R - m

Identifying anomalies

..i Anomalies

Healthy data Unseen data

AnoGAN

(a) Real (b)

 E—

Generated
G(2)

Generator G Discriminator D - anomalous

Fig. 2. (a) Deep convolutional generative adversarial network. (b) t-SNE embedding
of normal (blue) and anomalous (red) images on the feature representation of the last
convolution layer (orange in (a)) of the discriminator.

AnoGAN
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